Biostar TForce P965 Deluxe: Overclocking
FSB Overclocking Results


Biostar TForce 965 Deluxe
Overclocking Testbed
Processor: Intel Core 2 Duo E6300
Dual Core, 1.86GHz, 2MB Unified Cache
1066FSB, 7x Multiplier
CPU Voltage: 1.4750V (default 1.3250V)
Cooling: Scythe Infinity Air Cooling
Power Supply: OCZ GameXStream 700W
Memory: Geil PC2-6400 800MHz Plus (2x1GB- GX22GB6400PDC),
(Micron Memory Chips)
Video Cards: 1 x MSI X1950XTX
Hard Drive: Seagate 320GB 7200RPM SATA2 16MB Buffer
Case: Cooler Master CM Stacker 830
Maximum CPU OC:
(Standard Ratio)
500x7 (4-4-4-12, 1:1), 2.20V
3500MHz (+88%)
.

Click to enlarge

We were easily able to reach a final setting of 7x500FSB resulting in a clock speed of 3500MHz. We know the board can do better but the BIOS is locked at a 500FSB maximum currently. We were able to run at a very acceptable 1.475V at this setting with Vdroop being around .02~.03V during load testing. We were also able to run our memory at 4-4-4-12 at 2.2V on this board. We thoroughly enjoyed the overclocking aspects of this board as it only took a couple of reboots to get the system dialed in for our benchmark testing.

Memory Stress Testing

Click to enlarge

We take a look now at seeing how well our GEIL PC2-6400 memory operates in this board in both two and four DIMM testing. The screenshot above shows the actual memory settings used in our benchmark tests of the board. We do not modify the memory timings beyond the four major settings in our charts. The balance of the settings is implemented automatically via the BIOS. Biostar implements slightly tigher memory and MCH timings than the ASUS or Abit resulting in minor performance differences in our benchmark testing.

Biostar TForce P965 Deluxe
Stable DDR2-800 Timings - 2 DIMMs
(2/4 slots populated - 1 Dual-Channel Bank)
Clock Speed: 800MHz
CAS Latency: 3
RAS to CAS Delay: 3
RAS Precharge: 3
RAS Cycle Time: 9
Voltage: 2.20V

We were able to set our timings to 3-3-3-9 by increasing the memory voltage to 2.20V with our GEIL memory. We were able to hold these timings up to DDR2-840 on this board along with timings of 3-4-4-9 up to DDR2-860. The board ran at 4-4-3-10 up to DDR2-920 before switching to the final overlclock settings of 4-4-4-12.

Biostar TForce P965 Deluxe
Stable DDR2-800 Timings - 4 DIMMs
(4/4 slots populated - 2 Dual-Channel Bank)
Clock Speed: 800MHz
CAS Latency: 3
RAS to CAS Delay: 4
RAS Precharge: 4
RAS Cycle Time: 9
Voltage: 2.20V

Our settings of 3-4-4-9 at 2.20V were not quite as good as the ASUS 1.02G settings of 3-4-3-10 but due to tighter overall memory latencies the benchmarks were slightly improved across the board. We were able to keep this setting up to DDR2-830 before switching over to 4-4-3-10 settings that held stable until we reached DDR2-900. We then kept a setting of 4-4-4-12 at 2.20V up to our final overclock setting of 7x478, 3346MHz, with four DIMMs installed.

Biostar TForce P965 Deluxe: Board Layout and Features Gigabyte GA-965P-DS3: Feature Set
Comments Locked

62 Comments

View All Comments

  • smn198 - Monday, October 23, 2006 - link

    quote:

    we utilize a four hard drive setup and a three drive combination for our RAID 5 testing

    Would you be able to re-run using 4 drives for all of the tests please?
  • jonp - Sunday, October 22, 2006 - link

    -- “…budget sector and includes boards from ECS, Foxconn, Intel, and Gigabyte.” – will the MSI P965 Neo-F be in this set?

    -- the Abit AB9 Pro feature set does not show the eSata port on the SI 3132 (two SATA). it does show a serial port on the i/o panel but not one in the picture.

    -- The Biostar feature set shows 4 USB on the i/o panel when there are six in the picture.
  • JarredWalton - Sunday, October 22, 2006 - link

    Fixed - thanks.
  • powchi - Saturday, October 21, 2006 - link

    Can I use a 20-pin power supply on these boards since all are using 24-pin connectors? Or will I be needing 20pin to 24pin adaptor?

    The PSU is an Enermax NoiseTaker EG475P-VE SFMA 470W ATX 12V v1.3.
  • Aikouka - Sunday, October 22, 2006 - link

    Some motherboard manufacturers will no longer support your motherboard if they find out you've been running it with a 20-pin ATX plug or a 20->24-pin adapter. Just be safe and get a newer PSU :). I know DFI will no longer support the motherboard if it specifically asks for a 24-pin.
  • JarredWalton - Saturday, October 21, 2006 - link

    Technically, yes you can use 20-pin PSUs. Will they work, and will the system be stable? That varies. I haven't had any issues on the systems where I've done it, but if you do high overclocking it will likely become a serious issue.
  • powchi - Saturday, October 21, 2006 - link

    Jarred,

    So there's no need to use a 20pin to 24pin adaptor? What are the differences when using and not using an adaptor? Thanks.
  • lopri - Sunday, October 22, 2006 - link

    No. As a matter of fact, the adapter should be avoided. Just plug the 20-pin connector to 24-pin receptacle with 4-pin left empty. Like Jarred said, it should work in theory and it does in practice. However, the quality of PSU and how intense is one's OC can affect the (long-term) stability.
  • JarredWalton - Sunday, October 22, 2006 - link

    I suppose the adapter *could* help, as it ensures power is available on all the 24-pins, but you're still taking the power from the same source so depending on how that works out it can actually make things worse. I would typically say that if you have a 400W or better PSU you should be fine with little to moderate OC'ing even with 20-pins. (I have an OCZ ModStream 450W that certainly works fine in a 939 board with a decent 2.0 to 2.6 GHz overclock.)
  • lopri - Sunday, October 22, 2006 - link

    Yes! Not to brag about myself or anything, but I went through countless Socket 939 Opterons on DFI NF4 SLI-D with original Antec TruePower EPS12V (20-pins, not the TP2 with 24-pins) including an Opteron 165 @3.0GHz (9x333). TCCD up to 325MHz/2.5-4-3-8! The setup was absolutely stable.

Log in

Don't have an account? Sign up now