Conclusions and Final Thoughts

Our experience with the ASUS Rampage Formula has been tremendously enlightening thus far. Although we can confidently claim a long-standing familiarity with MCH Read Delay (tRD) and its affect on overall system performance, this motherboard provided us exactly the foundation we needed to develop our current understanding of just how some of these previously elusive settings really work. There is no reason why any enthusiast should not be able to arm themselves with this information in their quest for the perfect overclock based on overall system performance. We sincerely hope that the Rampage Formula is the first of many boards from ASUS to incorporate this kind of great innovation. We have grown accustomed to using it now, and we don't want to go back to the old methods of manipulating tRD.

The Rampage Formula's layout is as close to perfect to possible - water-cooling enthusiasts will have no problems fitting two ATI graphics cards in Crossfire, even when installing full-coverage water blocks. Through-hole mounting for the Northbridge and the ability to remove the stock cooling solution without disturbing the portion covering the MOSFETs in the power delivery circuit is especially nice. Fitting an after-market heatsink on the MCH will be simple and straightforward. Then again, this may not be necessary; we actually found the X48 to be cooler than the X38 in the production level boards.

The ability to use DDR2 is another great benefit to consider when selecting an X48 board. Again, ASUS has made the right choice in this arena and has decided to provide separate solutions based on each memory type. For the ultimate in performance, though, we suggest you check out DDR3 based configurations if you can afford it.



We anxiously await the impending availability of this board; we know that its release - and that of its DDR3-based "Extreme" brethren - has the potential to usher in a new round of 3D performance records from today's top overclockers. The early maturity of ASUS' BIOS coupled with the capabilities of the Intel X48 chipset make a fantastic combination for achieving absolute top speeds. For those of us more firmly grounded in reality, rest assured that we have a hard time finding reason not to recommend the use of this board in even the most demanding new systems.

It would be ignorant of us not to expect other companies such as MSI, abit, DFI, and Foxconn to follow suit with the introduction of their top-end X48 boards. In fact, just last week we took an in-depth look at the Gigabyte GA-X48T-DQ6 and what it had to offer. Although it's not quite as strong out of the gate, given time we expect BIOS improvements to close the gap. The Gigabyte board also uses newer DDR3 technology, so whether or not ASUS' comparable board will experience the same types of problems remains to be seen.

One thing is for certain, Intel and ASUS have teamed up to bring us another great overclocking choice that sets a new standard in the market. Early reports of limited performance improvements may have tempted you sit out the X48 release. Based on our results from the ASUS Rampage Formula, we will go on record now and reject our previous position. We will be running X48 boards in our personal systems; what about you?

How to Choose an Appropriate Memory Configuration
Comments Locked

73 Comments

View All Comments

  • dallas - Monday, March 24, 2008 - link

    I was wondering how this chipset and Windows Vista 64-bit handles IRQ ? I have a Creative X-fi and it has had a lot of problems with PCI-latency and shared IRQ. According to the manual PCI slot 2 is the only one of the two that does not share IRQ with the graphic cards. Do you guys have any experience of this ?

    Second question is related also to IRQ. I have a Razer Deathadder mouse which I use at 1000Hz polling rate and it seems to cause quite a bit CPU-usage (average of 10% with AMD64 3500+ when moving mouse at desktop without overlapping anything). I guess it would be ideal to connect it to a USB-port not sharing any IRQ. Rampage Formula has 12 USB-ports total, but reading the manual it says there is USB controllers 1 to 6 and USB 2.0 controllers 1 and 2. How do I relate these figures to the actual layout of the board ? USB controllers 2 and 5 are the only ones not sharing IRQ.

    http://dlsvr01.asus.com/pub/ASUS/mb/socket775/Ramp...">http://dlsvr01.asus.com/pub/ASUS/mb/soc...rmula/Ra...

    Thanks
  • nitemareglitch - Friday, March 7, 2008 - link

    My older DFI nForce 4 board had fully adjustable tRd among other things. Asus taking a play from their book?
  • rge - Monday, February 18, 2008 - link

    Granted I am using gigabyte p35 dq6 board, but I thought loadline simply was a sensor adjustment? Anyone know what is meant by induced power instabilities? measured by?

    I thought (and may well be wrong) that with loadline disabled, if I choose 1.25v bios as vcore, idle would be 1.23 volts (Voffset), load (dual core) would be 1.22v (Vdroop), when load stops, overshoot to 1.25v before decreasing back to 1.23 idle. Thus when you are choosing 1.25 volts in bios, you are choosing max volts ie, overshoot max, and not idle volts.

    I thought loadline was simply a ~.02v sensor calibration, so when enabled, and you choose 1.25 volts in bios, you are then choosing the idle volts (instead of overshoot max) and thus it idles at 1.25V. During load you still see vdroop to 1.24v, and overshoots to 1.27v.

    In other words no difference between loadline enabled 1.23v and loadline disabled 1.25v, just personal preference of making bios vcore set idle volts or max overshoot volts.

    If I am wrong can someone please inform me what loadline is, and what is meant by power instabilities...mean ?greater fluctuations in volts or what?
  • Nickel020 - Saturday, February 16, 2008 - link

    Firstly, great article! Got me a long way in increasing my memory speed and understanding the underlying factors.

    What I don't understand though is why the X48 is better than the X38. I already have the option to change tRD on my Gigabyte P35 DQ6, and I'm getting much better memory perfromance after manually setting it to 6.
    As I see it, the option to adjust tRD is only a BIOS issue and it can be done on P35 and X38, so how does this make the X48 a better chipset?
  • kjboughton - Sunday, February 17, 2008 - link

    The difference comes in the voltages required to run equivalent speeds/tRD settings. In fact, the X48 board are capable of running stable at much higher speeds, using tigher MCH Read Delay (tRD) values at lower voltages. More to come soon...
  • Holmer - Monday, February 18, 2008 - link

    Thanks for an excellent article.
    I would just love to know how well the Rampage formula handles overclocking with 4x1 GB RAM? How large is the performance hit as compared to 2x2 GB and can it handle 1200 MHz (with two 2x1 GB kits rated at this speed).
    Roughly when can we expect the loon awaited X48 roundup?
    Thanks a lot on beforehand.
  • Holmer - Friday, February 22, 2008 - link

    Another question: Is is possible to manually set tRFC > 42 in BIOS? If yes what is the maximun value of tRFC?
    I would be very grateful for an answer.
  • The Ghost - Saturday, February 2, 2008 - link

    With 400Mhz, tRD of 4, CL of 4 and 3:2 ratio I get this:
    1,334 > 1,333

    Is that enough to post or is 0,001 to little to "allowed" ?
  • Vikendios - Wednesday, January 30, 2008 - link

    It's all very fine, but as long as ATI/AMD GPU's are outclassed by Nvidia's, the gamer scene which drives the $300+ motherboard business has little interest in non-Nvidia-SLI solutions. It's bizarre that Intel focuses on chipsets that can apparently only handle well (correct me if I'm wrong) their arch-competitors AMD's GPU's in (Crossfire) arrays.

    Intel should hurry to develop competitors to 790i that are really neutral as to which twinned or tripled video cards are used.
  • Gary Key - Wednesday, January 30, 2008 - link

    The last time I tested it, X38 ran SLI faster than 680i. The problem is not the chipset, it is simply a decision by NVIDIA (and/or Intel) not to "officially" license SLI on the Intel chipset platforms, except for the upcoming Skulltrail board.

    This whole SLI/Crossfire debate has gone on long enough, the technologies accomplish the same purpose (are practically identical from a technological viewpoint) and setting up a board/BIOS to run either is actually very easy. CF runs just fine on the NV680i/780i and SLI runs just fine on the 975X/X38/X48 if driver support is present and the proper switches are enabled in the BIOS. Personally, I would like to have the ability to run (unhindered) AMD or NVIDIA GPUs in multi-GPU configurations on either chipset platform. I just wish they would let the market determine the best multi-GPU solution, but that is pie in the sky thinking. ;)

Log in

Don't have an account? Sign up now